

WPS Pompes immergées en Acier Inoxydable 4" et 6"

Notice d'installation et de mise en service

ATTENTION

Avant l'installation de la motopompe, les données techniques reprises sur les plaques d'identification de la pompe et du moteur doivent impérativement être recopiées dans le tableau repris ci-après.

Plaque d'identification de la pompe			
	Туре:	WPS	
	Nr de série:		
Jupe	Q _n :		m³/h
Pompe	H _n :		m
	n:		1/min
	Fréquence :		Hz
ا ِ	P _n :		kW
Moteur	T:		V
Mo	I _n :		Α
	Capaciteur:		μF (*)

(*)uniquement pour moteurs 1~PSC

CONTENU

		Page
1.	Généralité	3
2.	Sécurité	3
3.	Transport et stockage intermédiaire.	4
4.	Description du produit, accessoires et données d'installation	5
5.	Assemblage /Installation sur site	7
6.	Mise en service, démarrage et arrêt	10
7.	Entretiens et réparations	11
8.	Problèmes techniques	12
9.	Nomenclature	13
10.	Section de câble	14

1. GENERALITE

1.1. Applications

Les moteurs immergés des pompes ont été fabriqués afin de pomper de l'eau claire ou légèrement chargée pour alimenter les systèmes d'adduction d'eau en général ainsi que pour l'irrigation les systèmes d'arrosage, les rabattements d'eau et l'installation des pompes à chaleur. D'autres applications incluant la surpression, l'air conditionné, les fontaines, ... Mais tout particulièrement conçus pour les installations de captage d'eau dans les puits profonds.

1.2. Détails du produit.

La série et son type, les données d'utilisation les plus importantes ainsi que le numéro de série de fabrication sont chacun marqués sur leur plaques d'identification respective; tant pour le moteur que pour la pompe. Nous vous recommandons donc avec insistance, de retranscrire ces différentes données sur la seconde page de ce manuel d'installation et de mise en service avant de mettre la pompe en service

1.3. Sonde de niveau d'eau.

Les sondes de niveau d'eau de pompe WPS avec un moteur Franklin Electric est inférieur à 70 dB(A)

2. SECURITE

Ce manuel d'installation vous donne des instructions de base, qui doivent être observées tant pendant l'installation que durant l'utilisation ainsi que lors de l'entretien. C'est donc pour cette raison qu'il est absolument impératif que ces données d'instruction soient entièrement lues et bien comprises tant par la personne responsable que par la personne responsable techniquement de la mise en marche de l'installation de la motopompe. Ce manuel d'installation et d'utilisation dûment lu et complété doit impérativement toujours rester sur le site d'installation de la motopompe.

2.1. Marquage des instructions de sécurité dans les instructions d'opération.

Les instructions de sécurité contenues dans cette notice d'utilisation dont le non-respect peut donner naissance à une mise en danger de personnes sont réprésentées par les symboles suivantes ::

Lors d'un risque général (suivant ISO 3864-B.3.1)

Lors d'un avertissement à l'égard d 'une tention électrique (suivant ISO 3864-B.3.6)

Chaque mesure de sécurité non respectée peut causer un danger à la pompe et ou motopompe, ainsi qu'à son fonctionnement

La non application des instructions de sécurité pourrait altérer à la sécurité du personnel, de l'environnement ainsi que de la motopompe. La non application d'une, ou de ces instructions de sécurité annulera automatiquement tous recours et droits de réclamer des dommages et ou des réparations de quelque sorte qu'il soit.

En particulier, il résultera d'un non respect des consignes par exemple en causant :

- Des dommages importants et quelques fois irremplaçables sur l'installation et ou motopompe.
- Des dommages pour la maintenance et la possibilité de service futurs (réparations...).
- Blessures aux personnes pour raisons électriques, mécaniques, et éventuellement chimiques.

2.2. Personnel entraîné et qualifié.

Le personnel employé pour l'installation, le montage, la mise en service et l'inspection doit-être suffisamment entraîné et qualifié pour ce travail. Les responsables, les autorités du personnel doivent être exactement défini à l'utilisateur. Dans le cas ou le personnel utilisé ne serait pas compétant, celuici devrait d'abord recevoir les formations nécessaires et être entraînés. Si nécessaire, ceci pourrait-être envisage par le fabricant ou le fournisseur du matériel à l'utilisateur final. Plus encore, l'utilisateur final doit s'assurer que le personnel employé connaisse parfaitement les instructions d'installation et de mise en service.

2.3. Consigne de sécurité pour le travail de maintenance, d'inspection et d'installation

L'utilisateur final doit s'assurer que le personnel employé pour effectuer le travail soit autorisé et possède les qualifications requises en ayant pris lui-même connaissance des instructions de montage et d'utilisation. Comme principe général, tout travail sur la motopompe ne peut se faire que quand celle-ci est à l'arrêt. Il est impératif que les procédures pour arrêter la motopompe soient suivies parfaitement comme décrit dans la notice d'instruction.

Après la finition de l'installation, tous les systèmes de sécurité et de protection seront remis en route pour retester l'installation une nouvelle fois. Avant la remise en service veuillez observer les points indiqués dans le paragraphe "Mise en marche".

2.4. Interdiction de modifier ou de travailler sur les composants des fabricants et de leurs pièces de rechange.

Aucun travail, ni changement sur motopompe ne peut-être effectué sans l'accord préalable du fabricant. Pour des raisons de sécurité, il est impératif d'utiliser les pièces de rechange et accessoires autorisés par le fabriquant. L'utilisation d'autres pièces que celles décrites par le fabriquant annule automatiquement toute responsabilité de ce dernier.

3. TRANSPORT ET STOCKAGE INTERMEDIAIRE

Il est a noter que le transport de la motopompe doit se faire de façon horizontale (avec chariot ou élévateur munis de fourches), et que la distribution de poids entre la pompe et le moteur est totalement différente. D'habitude, le côté le plus lourd est celui du moteur. En cas de stockage de façon verticale, il est primordial que l'espace de rangement soit aménagé de telle façon à ce qu'aucune pièce ne puisse tomber.

Lors de l'ouverture de l'emballage et de la manutention de l'unité, assurez-vous toujours qu'en aucun cas les connections électriques ne sont endommagées. En particulier, évitez de tirer la câble électrique.

Tout transport et manutention de l'unité doit-être fait de façon correcte. Le moteur de la pompe WPS est livré dans un emballage qui empêche le fléchage et se prévient d'autres dommages pendant le transport et ou le stockage. La première priorité lors du déballage est de vérifier que l'emballage n'a pas été détérioré et n'est pas mouillé.

Quand l'unité est temporairement stockée, en aucun cas sa position ne peut amener un fléchage . De plus, des mesures doivent être prises pour protéger le câble électrique à la sortie du protège câble (morceau de caoutchouc...). Le moteur est rempli avec du liquide antigel garantissant un stockage et un transport atteignant des températures jusque -30° C.

Ces instructions sont d'application pour les hydrauliques de pompe WPS assemblées avec des moteurs Franklin Electric. Si les parties hydrauliques WPS sont assemblées avec d'autres moteurs, veuillez tenir compte que les données de ces autres moteurs pourraient différer des données reprises dans cette notice d'instruction.

4. DESCRIPTION DU PRODUIT, ACCESSOIRES ET DONNEES D'INSTALLATION

4.1. Assemblage du moteur sur la partie hydraulique (suivre section 9 pour les positions des parties hydrauliques).

Vérifier que l'arbre du moteur ainsi que l'axe de la pompe tournent librement. Vérifiez que l'endroit où vont s'assembler la pompe sur le moteur soient plats et propres pour un alignement parfait. Mettre un peu de graisse pour machine alimentaire et résistante à l'eau, sur les rainures de l'axe du moteur pour minimaliser les frictions et protéger l'entrée de tout matériel abrasif entre ces pièces.

4.1.1 Hydraulique de pompe 4".

4.1.1.1. Moteur avec fiche sans connection sousmarine

ATTENTION

Placer le moteur immergé dans un étau. Le câble du moteur peut être poussé au travers du pieds de la pompe, pos.16, et en-dessous du protège câble, pos. 20, sans jamais desserrer les écrous, pos. 22, ou sans démonter le protège câble, pos.

20. Fixer le moteur au pieds de la pompe, pos. 16, et serrer les boulons de façon régulière en diagonale jusqu'à un couple de 18 Nm.

La pompe est maintenant assemblée avec le moteur correspondant et peut-être testée.

4.1.1.2. Moteur avec fiche et connection sousmarine.

Enlevez le protégé câble, pos. 20, en le poussant en dehors du logement dans lequel il se trouve dans le bas du pieds de la pompe, pos. 16, Ceci, en frappant légèrement avec un marteau en plastic contre le dessous du protège câble, afin de le faire remonter le long de la pompe. Poussez le protège câble, pos. 20, vers la gauche et à l'aide d'un tournevis, dégagez les pattes de droite du protégé câble en dehors du tirant droit, ensuite repoussez le protège câble vers la droite et il sera libéré.

En aucun cas il ne faut desserrer les écrous, pos. 22, des deux tirants proche du protège câble. Fixez le moteur de la pompe adéquate avec sa fiche au pied de la pompe, pos. 16, et serrez les boulons du moteur de façon régulière et en diagonale jusqu'à un couple de 18 Nm. Aligniez le câble sur la pompe à l'endroit où va s'installer le protège câble et recouvrir le câble avec le protège câble, pos. 20. Faites glisser le protège câble avec ses pattes en dessous du tirant gauche, pos. 21. Utilisez si besoin un marteau en plastic et un tournevis pour l'engager à fond en dessous sans rien abîmer. Poussez ensuite sans abîmer le câble, l'ensemble câble dans le protège câble en dessous de tirant à droite de celui-ci. Poussez le protège câble, pos. 20, vers le bas jusqu'au moment ou il sera engagé dans son logement prévu dans le dessous du pieds de la pompe, pos. 16.

Ne pas desserrer les écrous, pos. 21, des tirants. La pompe est maintenant prête pour être testée.

4.1.2 Pompe 6".

4.1.2.1. <u>Moteur avec fiche et sans connection sousmarine.</u>

ATTENTION

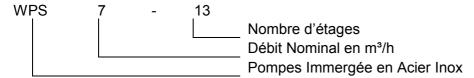
Placez le moteur immergé de façon verticale. La fiche du moteur peut-être poussée au travers du pieds de la pompe, pos.12, et en dessous du protège câble, pos. 16, sans défaire les écrous, pos. 18, ni même le protège câble, pos. 16. Fixez le moteur

au pieds de la pompe, pos. 12, et serrez les boulons ou écrous de fixation du moteur jusqu'à un couple de serrage de 100 Nm.

La pompe est maintenant assemblée et peut-être testée.

4.1.2.2. <u>Moteur avec fiche et connection soumarive.</u>

Enlevez le protégé câble, pos. 16, en le poussant en dehors du logement dans lequel il se trouve dans le bas du pieds de la pompe pos. 12. Ceci, en frappant légèrement avec un marteau en plastic contre le dessous du protège câble, afin de le faire remonter le long de la pompe. Poussez le protège câble, pos. 16, vers la gauche et à l'aide d'un tournevis, dégagez les pattes de droite du protégé câble en dehors du tirant droit, ensuite repoussez le protège câble vers la droite et il sera libéré.


En aucun cas il ne faut desserrer les écrous, pos. 18, des deux tirants proche du protège câble. Fixez le moteur avec le câble au pieds de la pompe, pos. 12, et serrez les boulons ou écrous du moteur jusqu'à un couple de serrage de 100 Nm. Alignez le câble dans le protégé câble, pos. 16, et faites le glisser en dessous du tirant gauche pos. 17, à côté du protège câble, pos. 16. Utilisez si nécesaire un marteau en plastic et un tournevis. Poussez les pattes de droite du protège cable vers la droite et introduisez celles-ci en dessous du tyrant droit à côté du protège câblethe. Poussez le protégé câble, pos. 16, vers le bas jusqu'au point ou il est à sa place dans son logement prévu dans le pieds de la pompe, pos. 12.

ATTENTION

Ne pas desserrer les écrous, pos. 18, des tirants.

La pompe est maintenant assemblée et peut-être testée.

4.2. **Designation** (exemple)

4.3. Dimensions et poids

Les dimensions et poids des unités sont mentionnés dans les catalogues des pompes .

4.4. Données d'installation

4.4.1. Détails de localisation

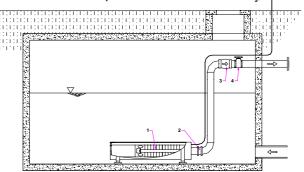
Le moteur immergé de la pompe WPS est conçu idéalement pour des installations verticales dans des puits profonds de petit diamètre et petit bassin et réservoir. Etant donné qu' il n'y a pas d'entretien à réaliser et que ce moteur ne peut-être en forme opérationnel qu'à partir du moment ou il est entièrement immergé dans l'eau, celui-ci ne nécessite aucune adaptation particulière dans la cave, la maison ou chambre de travail.

La profondeur maximale d'immersion est de 350 m, à partir du niveau d'eau stationnaire dans le puits Hh et le point le plus bas du moteur. Le niveau d'eau dans un puits doit être connu et mesuré.

- 1. Motopompe immergé
- 2. Tuyau de refoulement
- 3. Clames de support
- 4. Câble électrique
- 5. Boîtier de mise en marche

Note: He – Ht ≥ 0.5m!

- D. I.D. Diamètre du tubage
- T. Profondeur du puits total
- He. Profondeur d'installation
- Hh. Niveau d'eau stationnaire
- Ht. Niveau opérationel


fig. 1: Installation verticale (ex: puits profond)

Ceci s'applique aussi pour les installations horizontales, assemblée sur socle, que nous pouvons également fournir. Quand les pompes sont assemblées avec les moteurs prêts pour l'installation, il n'est pas nécessaire d'aligner la pompe avec le moteur car ceci est déjà fait. Les fondations ou l'endroit où va être installé la motopompe doit être plat et avoir un support de guidage plat suffisant pour la motopompe.

1. Motopompe immergée avec jupette de refroidissement et adaptateur

- 2. Joint de dilatation
- 3. clapet anti-retour
- 4. Vanne d'arrêt
- 5. Câble électrique immergé
- 6. Protection contre marche à sec
- 7. boîtier de mise en marche

Fig 2: Installation horizontale (ex: réservoir, bassin)

ATTENTION

Il est très important que la motopompe soit protégée contre la marche à sec dans les cas ou le puits ne donnerait pas assez d'eau ou qu' il y ait trop de fluctuations de niveau d'eau dans le puits ou le milieu ou la motopompe soit installée. Ceci afin d'éviter tout dommage à la motopompe.

ATTENTION

Il est très important également de s'assurer que la motopompe ne soit jamais installée dans le fonds du puits sinon le sable ou la boue pourrait endommager le moteur. Ceci pourrait donc empêcher la dissipation de la chaleur du moteur de

façon dangereuse.

4.4.2. Caractéristiques de l'eau

La pompe WPS est destinée à pomper l'eau ayant les caractéristiques suivantes:

jusque + 30°C (pour des t° plus hautes, demander au fabriquant), Température:

Quantité de sable: jusque maximum 50 g/m³,

Agaressivité: normale ou légèrement supérieure.

4.4.3. Caractéristiques des liquides pompés.

Les motopompes sont destinées à pomper de l'eau claire, froide ne contenant ni air **ATTENTION** ni gaz. Si tel était le cas, les performances de la motopompe ainsi que ses caractéristiques seraient sérieusement diminuées ou même anéanties.

Assurez-vous que le minimum de débit d'eau repris dans le tableau ci-après, passe le long du moteur avec les caractéristiques suivantes :

Minimum de débit d'eau pour le refroidissement des moteurs jusque 30°C.				
Casing ou tubage I.D.	Moteur 4", débit de	Moteur 6", debit de		
	refroidissement	refroidissement		
	8 cm/sec	15 cm/sec		
[mm (pouce)]	[m³/h]	[m³/h]		
102 (4")	0,3	-		
127 (5")	1,6	-		
152 (6")	3,0	2,1		
178 (7")	4,6	5,7		
203 (8")	6,9	10,2		
254 (10")	11,4	20,4		
305 (12")	18,2	31,8		

5. Mise en place et installation sur site

Durant toutes les procédures d'installation, chaque puits, bassins ... doit-être sécurisé de telle sorte que jamais rien ne puisse y tomber dedans.

5.1. Outils d'installation et accessoires

Une installation correcte d'une motopompe WP nécessite une potence de levage. (La capacité de levage et de résistance de cette potence doit être supérieure au poids total comprenant: les poids cumulés de la motopompe, des tuyaux de refoulement remplis d'eau et des câbles.

Liquide des moteurs 5.2.

Les moteurs fournis par le fabriquant sont remplis en usine avec de l'eau et un peu de liquide servant à protéger ceux-ci contre le gel. Si le moteur a plus d'un an, (code de date), le niveau de ce liquide doit-être contrôlé avant l'installation.

5.3. Extension des câbles électriques.

Dans tous les cas les groupes ne peut pas être utilisé dans des installation de piscines, les bassin de jardin et leurs périmètres de sécurité que si leur installation est conforme aux normes IEC 64(CO) 124.

Si nécessaire le petit câble fourni (fiche moteur) peut-être prolongé par un autre câble électrique qui est prévu pour l'immersion dans l'eau. La connexion entre ces deux câbles doit être réalisée avec une connexion sous-marine spécialement conçue pour cela et peut vous être fournie par nos soins sur demande. La connexion doit-être réalisée parfaitement en suivant les instructions de celle-ci. Il est impératif en réalisant ce prolongement de câble, qu'un soin tout particulier soit pris pour s'assurer que les différents conducteurs ainsi que leur couleur soient marqués et répertoriés. Les câbles conducteur de phase sont: le noir (U), le brun (V) et le bleu (W). Le conducteur de terre est quant a lui: vert / jaune

L'électricien est seul responsable pour le choix et le dimensionnement du câble. La section minimale est spécifiée en accord avec les normes IEC 364 (VDE 0298 partie 4) ou, dans le tableau repris au point 10.

5.4. Protection contre les chocs électriques.

Concernant la protection contre les chocs électriques (mise a terre), Il est impératif de respecter les obligations nationales du pays concernant l'utilisation de machine alimentée avec un moteur électrique.

Les moteurs immergés ont de base une terre. Le conducteur de terre est connecté à l'intérieur au stator et ceci est réalisé en usine. Le petit câble avec les quatre conducteurs (fiche moteur) comprend donc une terre venant du moteur. Il est de la responsabilité de l'utilisateur final de s'assurer que connexion de conducteur de la terre, dans la connexion servant au prolongement de câble, soit réalisée parfaitement et proprement jusqu'au coffret de démarrage de la motopompe

5.4. Installation sur site

Pendant toute la durée de la procédure d'installation, le câble électrique doit-être protégé afin de se prévaloir de tout dommage mécanique.

5.5.1. Installatin vetricalle (ex: dans un puits profonds)

5.5.1.1. <u>Installation avec tuyauterie de refoulement filetée.</u>

Procédure:

- Le premier tuyau de connexion (L ≤ 2m) est vissé fermement dans la tête de la pompe et sécurisé afin qu'il ne puisse se défaire de celle-ci.
- La première paire de clame de support est attachée au premier raccord de tuyau de refoulement immédiatement au-dessous du premier raccord supérieur de tuyauterie.
- La pompe WPS est ensuite transportée par cette première paire de clame au dessus du puits et elle est descendue par cette paire de clame dans le puits jusqu'au moment ou ces clames sont posées sur la tête de puits.
- La seconde longueur de tuyau de refoulement étant attachée en dessous de la fixation supérieure par une seconde paire de clame est maintenant fixée à la suite du premier tuyau de refoulement et cette seconde clame sert de point d'attache pour supporter le poids de l'installation complète.
- La première paire de clame peut alors être défaite et la pompe peut être descendue dans le puits jusqu'au moment ou cette deuxième paire de clame de support vient se déposer sur la tête de puits.
- Ce montage de clame de support et de descente lente de la pompe dans le puits est répétée de façon méticuleuse jusqu'au moment ou la pompe se trouve à la bonne profondeur dans le puits (He).

5.5.1.2. <u>Installation avec des tuyaux de refoulement en plastic.</u>

Toujours vérifier les spécifications techniques du fournisseur de ces tuyaux. Si la pompe WPS devait-être installée avec des tuyaux de refoulement en plastic, il est impératif de suspendre la motopompe par deux câbles qui ne rouillent pas, et qui sont choisis (section, résistance...) de façon appropriée pour cette installation et sont accrochés aux deux crochets se trouvant dans la tête de la pompe.

5.5.2. Installation horizontale (ex.: dans un bassin)

Il est important de savoir que dans le cas d'installation de pompe avec beaucoup d'étages, le moteur et la partie de la pompe doivent être supporté de façon parfaite

dans l'alignement et donc à de multiples endroits. Dans le cas de non respect de cette obligation, la motopompe et même l'installation seront endommagées. Pour garantir le refroidissement du moteur immergé, une jupette de refroidissement doit-être installée. (Voir 4.4.3.)

La tuyauterie de refoulement de pompe ne peut en aucun cas exercer quelque force sur la motopompe installée. (poids, tension , vibration...) Nous recommandons par mesure de précaution d'installer entre la motopompe installée et la tuyauterie de refoulement, un tuyau flexible entre ces deux composants .

5.6. Fixation du câble électrique à la tuyauterie de refoulement.

Pendant l'installation de la motopompe dans le puits, il est important de fixer le câble électrique tous les 3 mètres au tuyau de refoulement (avec un clip n°1) et ce directement en commençant juste au dessus de la première fixation de la pompe à la tuyauterie dès la descente de la pompe dans le puits. Les clips de serrage doivent être serrés de façon à ce qu'en aucun cas, le poids du câble éléctrique ne puisse l'entraîner lui même dans le puits par son propre poids.

5.7. Connection électrique. (moteur)

Pendant toute l'installation électrique, toutes les remarques pertinentes du pays ou de la région devront-être scrupuleusement respectées et ou bien au minimum les normes IEC 64.

5.7.1. Généralités

- Comparer le voltage réel existant sur le réseau d'alimentation avec les données renseignées sur les références du moteur.
- Pour la protection du moteur nous vous recommandons l'utilisation d'un relais themo-magnétique
- Si un relais de courant de default est prévu, il ne doit être monté que dans le circuit électrique du moteur.

5.7.2. Boîtier de démarrage

Pour la commande de la pompe à distance par un manocontacteur, interrupteur à flotteur etc. il est recommandé de prévoir un coffret électrique, avec relais de protection du moteur incorporé, sur le circuitde puissance du groupe. La protection contre la surcharge doit être rélgée sur le courant de service. Un ampèremètre est vivement conseillé.

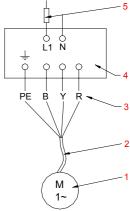
5.7.3. Connection Monophasée.

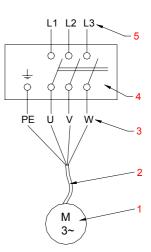
Pour la connexion au réseau électrique, vous pourrez utiliser un boîtier qui peut vous être fourni par nous. Il faut cependant remarquer que ce type de moteur monophasé nécessite un condensateur de démarrage. En fonction du type d'exécution de moteur il sera reconnu que:

moteur
 cable électrique
 bornier
 B: Noir
 Y: Bleu
 R: Brun

- 4. coffret de démarrage
- 5. fusible

Figure 3: Cablage pour moteur «3-wire» de 0,37 – 3,7 kW/50 Hz


5.7.4. Connexion pour moteur triphasés (3~)


Dans ce cas il vous est possible d'utiliser le boîtier de démarrage qui peut vous être livrée par nous. Réalisez la connexion suivant la fig . 4.

- 1. moteur
- 2. Câble d'alimentation électrique
- 3. nomenclature des conducteurs
- 4. boîtier de démarrage
- 5. Phases principales

PE. Conducteur de terre (jaune / vert)

Figure 4: Cablage pour les moteurs triphasés.

5.7.5. Courant I_N

5.7.5.1. Moteurs 4"

P _N [kW]		I _N [A]				
		1 ~	(1)		3 ~	
50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60	Hz
		230 V	230 V	400 V	380 V	460V
0,37	0,59	4,0	6,0	1,3	1,8	1,5
0,55	0,81	6,0	8,0	1,7	2,3	1,9
0,75	1,0	7,3	9,8	2,2	2,8	2,4
1,1	1,4	8,9	11,5	3,2	3,6	3,0
1,5	1,8	11,1	13,2	4,0	4,9	4,1
2,2	2,5	15,9	17,0	5,9	6,5	5,4
3	3,4	ı	-	7,8	-	-
3,7	4,2	22,7	27,5	9,5	10,7	8,9
4	4,6	ı	-	10,0	-	-
5,5	6,4	-	-	13,7	15,7	13,0
7,5	8,6	-	-	18,5	22,4	18,5

⁽¹⁾ data for Franklin Electric 3 Wire motors

5.7.5.2. Moteurs 6"

P _N [kW]		I _N [A] 3 ~		
50 Hz	60 Hz	50 Hz 400 V		Hz 460V
4,0	4,6	9,3	-	-
5,5	6,4	12,5	14,9	12,3
7,5	8,6	16,0	19,5	16,1
9,3	10,7	20,7	-	-
11	12,6	23,3	28,7	23,7
15	17,2	31,3	36,7	30,3
18,5	21,2	38,5	45,4	37,5
22	25,3	45,3	54,7	45,2
30	34,5	61,8	75,0	62,0
37	42,5	73,0	93,2	77,0
45	51,7	89,5	110,2	91,0

5.8. Equipement de protection.

5.8.1. Protection contre " la marche à sec "

Un système de protection contre la marche à sec est hautement recommandé dans le cas d'installation de pompes dans des puits ou les fluctuations d'eau sont extrêmes et aussi quand les puits ne débite pas beaucoup d'eau.

5.8.2. Protection contre la foudre

Le parafoudre ne protégé pas des coups de foudre direct mais il protégé des surtentions atmosphériques et de la foudre quand elle tombe à proximité.

Le montage et le branchement électrique se font alors d'après les instructions jointes et selon les prescriptions en viguer en usage dans chaque pays.

6. MISE EN SERVICE , DEMARRAGE/ARRET

6.1. Mise en marche

6.1.1. Contrôle du sens de rotation.

Pour les moteurs monophasés, le sens de rotation est unique et fixe et donc, ne peut-être changé. Afin de pouvoir contrôler le bon sens de rotation d'une motopompe triphasée, Il y a lieu de la mettre en service dans l'installation et de la brancher. Ceci , en prenant soin de fermer la vanne de sortie de l'installation de pompage jusqu'a débit de 0. En même temps, il y aura lieu de lire quelle pression est atteinte par la pompe. En inversant les fils de deux phases, refaire la même opération et regarder quelle pression est atteinte. Le bon sens de rotation à connecter est celui défini par le résultat du plus de pression.

6.1.2. Notes pour première mise en service (Teneur de sable)

Dans le cas de nouveaux puits, la pompe WPS devra tourner pendant les dix premières minutes avec la vanne de réglage légèrement entrouverte. Ceci afin d'éviter qu'une trop grande quantité de sable ne soit pompée ce qui amènerait à une surcharge du puits et bien évidemment a une usure anormale prématurée de la pompe elle-même. Après quoi, lentement et de manière progressive, la vanne de réglage pourra être ouverte de telle sorte que en aucun cas, la motopompe ne travaille hors des courbes de bon fonctionnement.

6.1.3. Régulateurs de fréquences

Afin d'éviter toute surchauffe de moteur , les régulateurs de fréquence supérieurs à 20 cycles par heure ne sont pas autorisés, a moins qu'une période minimale de trois minutes d'arrêt soit respectée.

6.1.4. Mode d'utilisation avec vanne de réglage partiellement fermée.

Si il s'averrait nécessaire de devoir travailler pendant un assez grand moment, pour une raison quelconque, avec la vanne de réglage trop partiellement fermée, alors afin de vous prévaloir de la surchauffe de moteur il sera important de respecter cependant comme règle minimale de base que le débit de la pompe doit au moins être de 10 % de son débit normal quand la pompe travaille a son rendement maximal. Dans le cas de pompage avec des jupettes de refroidissement, prière de contacter le fabriquant.

6.1.5. Utilisation a vanne fermée.

La pompe WPS ne devra jamais tourner plus de 5 minutes à vanne fermée. Car ceci aurait comme résultat un réchauffement de l'eau pompée et cette augmentation rapide de chaleur sera transmise au moteur et donc au bobinage du moteur qui pourrait de ce fait être endommagé.

6.2. Limite d'utilisation

Les recommandations de sécurité opérationnelles stipulent que la pompe WPS ne peut travailler de façon continuelle que dans les débits et pressions limités dans les documentations techniques.

6.3. Stockage et préservation

En principe, la pompe WPS devrait être stockée de façon verticale, dans un endroit sec, sans poussière, à l'abris de la chaleur et des rayons du soleil. En cas d'impossibilité, la pompe WPS doit-être stockée de façon horizontale garantissant qu'en aucun cas un fléchage de la pompe ne puisse apparaître de quelque façon que se soit et certainement en plus de cela, en cas de moto-pome, à l'endroit de connexion entre le moteur et la pompe. Dans cette application, il est a important de prendre les mesures nécessaires pour que le câblage à la sortie du protége câble ne soit pas tordu, ou recourbé sur lui-même ou qu'il ne soit entaillé (pos. 22 pour 4" et pos. 16 pour 6").

6.4. Remise en marche après stockage

En cas d'une remise en marche de la pompe (après un temps d'arrêt de long durée ou démontage) vérifier si les données de la pompe corresponde aux valeurs renseignées sur le support d'identification de la pompe.

7. ENTRETIENS ET REPARATIONS

La pompe WPS est une pompe qui n'a pas besoin d'entretien.

Comme prévention et afin de prévenir à l'avance d'un potentiel dommage à venir, nous vous recommandons de vérifier de façon régulière, la consommation du courrant ainsi que la hauteur manométrique atteinte par la moto-pompe. Il n'est pas question pour autant de devoir sortir la pompe du puits pour réaliser cette inspection régulière et succincte qui garantira une longue vie à la moto-pompe.

8. CAUSE DE PROBLEMES ET REMEDES

CAUSE REMEDE

8.1. La pompe ne donne plus de débit ou presque plus d'eau.

	no pino n onni:
Vanne de réglage fermée ou obturée.	Vérifier la vanne de réglage.
La pompe ne tourne pas dans le bon sens de	Inverser entre-eux la connexion de deux des
rotation (3~ seulement)	phases d'alimentation de courant.
Le niveau d'eau dans le puits peut-être trop bas et	Freiner le débit, ou bien redescendre la pompe
ne permet plus de donner le débit désiré.	plus bas dans le puits. (ne jamais installer la
	pompe dans le fonds du puits).
Mauvais choix de pompe	Enlever la pompe et y installer la pompe ayant les
	caractéristiques requises pour ce puits.
Tuyauterie bouchée ou encrassée.	Réparer les tuyaux de refoulement de pompe.
Crépine d'aspiration encrassée ou bouchée	Nettoyer la crépine d'aspiration
Pompe et ou vanne bouchée ou encrassée	Elever la pompe et ou la vanne et réparez la
Pompe tourne à vitesse réduite	Vérifier voltage trop bas et les phases.
Il y a des fuites dans l'installation	Vérifiez les fuites dans l'installation
Axe ou accouplement cassé	Sortir la pompe , inspecter et réparer

8.2. Pas assez de pression.

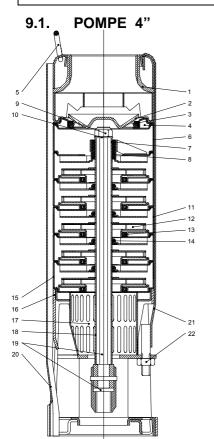
o.z. i as assez de pression.	
L'eau dans le puits est trop basse	Freiner le débit de la pompe ou descendre la
	pompe plus bas mais jamais dans le fonds du
	puits.
Réglage de pression sur pressostat	Vérifier les pressions réglées sur le pressostat
	et vérifiez qu'il fonctionne bien.
Pompe tourne dans le mauvais sens de rotation	Echangez entre-eux deux des conducteurs
(3~ seulement)	d'alimentation électrique.
Fuites dans l'installation	Vérifiez les l'installation contre les fuites.
Pompe usée	Enlever la pompe et remplacez les parties usées.
Roues encrassées, bouchées	Sortir la pompe et l'inspecter

8.3. Le disjoncteur saute.

La pompe est ensablée	Nettoyer pieds, la crépine d'aspiration, les composants de la pompe le clapet anti-retour et la vanne de réglage.
	varine de regiage.
Moteur défectueux	Enlever la pompe et réparer le moteur
Mauvais choix de fusibles	Installer les fusibles adéquats
Le moteur ne tourne que sur deux phases	Remplacer le fusible défectueux et vérifier les connexions des câbles électriques .

8.4. Démarrage de pompe trop fréquents

Le réservoir de pression est sous dimensionné	Remplacer celui-ci par un autre don't les
	dimensions sont correctes.
Il n'y a pas suffisamment d'air dans le réservoir de	Remettre suffisamment d'air dans le réservoir et
pression.	vérifiez la membrane du réservoir pour des fuites
	éventuelles.
Clapet anti-retour	A remplacer le si nécessaire
Pressostat	Vérifier les pressions de services réglées et
	examinez pour ne pas avoir des défaut.


8.5. La pompe tourne de façon anormale et ou fait du bruit.

Pompe bouchée, encrassée	Enlever la pompe et la réparer
Trop d'air ou de gaz pompé dans l'eau.	Enlever l'air ou le gaz de l'eau.
Butée de force axiale moteur défectueuse	Echanger la butée de la force axiale
Joints radial de pompe défectueux	Echanger les joints de pompe
Vibration causes par l'installation	Vérifier et changer l'installation
Le point d'utilisation de pompage en dehors de la	Diminuer le débit de la pompe
courbe de pompage (« up-trust »)	

9. NOMENCLATURE

Part No.	Description
1	Tête de pompe
2	Clapet anti-retour
3	Siège clapet anti-retour
4	Soutient siège clapet anti-
	retour
5	Crochet de suspension
6	Diffuseur supérieur
7	Espaceur
8	Guidage supérieur
9	Ecrou M8
10	Rondelle
11	Diffuseur
12	Roue
13	Joint collerette de roue
14	Joint intermédiaire
15	Premier diffuseur
16	Pieds de pompe
17	Crépine d'aspiration
18	Espaceur
19	Axe avec accoupl NEMA
20	Protège câble
21	Tirants
22	Ecrous M8

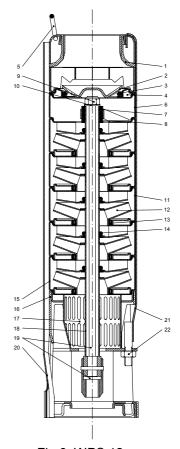
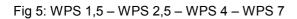
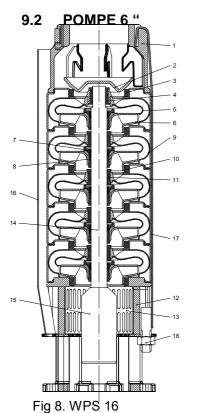




Fig 6: WPS 12

Part No.	Description	
1	Tête de Pompe	
2	Clapet anti-retour	
3	Siège clapet anti-retour	
4	Guidage supérieur	
5	Diffuseur supérieur	
6	Roue	
	Ecrou de serrage de	
7	buselure de fixation de roue	
8	Buselure de fixation de roue	
9	Diffuseur	
10	Joint de collerette de roue	
11	Joint intermédiaires	
12	Pieds de pompe	
13	Crépine d'aspiration	
14	Axe	
15	Accouplement	
16	Protège câble	
17	Tirants	
18	Ecrous M12	

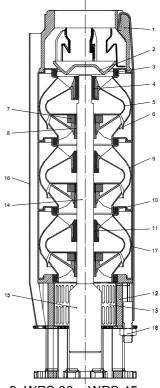


Fig 9. WPS 30 – WPS 45

10. SECTION DE CABLE

Les câbles pour les moteurs immergés doivent avoir les caractéristiques techniques d'immersion , ainsi que le dimensionnement des conducteurs et du câble suivant la température et garantissant le voltage suffisant au moteur.

10.1. 4" Moteurs Immergés

10.1.1. Moteur Monophasé : longueur maximale du câble en cuivre

Puis	sance M	oteur	Section de cable en [mm²] par conducteur											
Volts	kW	HP	1,5	2,5	4	6	10	16						
	0,25	1/3	170	280	450	670	1130	1750						
	0,37	1/2	120	200	320	480	810	1260						
230	0,55	3/4	80	130	220	320	550	850						
Volt	0,75	1	60	100	170	250	430	670						
	1,1	1½	40	70	120	180	300	470						
50	1,5	2	30	60	90	130	230	360						
Hz	2,2	3	20	40	60	90	150	230						
	3,7	5	0	20	40	60	100	160						

10.1.2. MOTEURS Triphasés

Puis	sance m	oteur	,	Section de	câble en	[mm²] par o	onducteu	r	
Volts	kW	HP	1,5	2,5	4	6	10	16	
	0,37	1/2	270	450	720	1080	1840	2860	
	0,55	3/4	180	300	490	730	1250	1940	
	0,75	1	140	230	370	550	940	1460	
	1,1	1½	90	160	250	380	650	1010	
230 Volt	1,5	2	70	120	190	290	500	780	
Voit	2,2	3	50	80	130	200	340	540	
50	3,0	4	40	60	100	150 120	260	410	
Hz	3,7	5	30	50	80		210	330	
	4	5½	30	50	70	110	190	300	
	5,5	71/2	0	30	60	90	150	230	
	7,5	10	0	0	40	70	110	180	
	0,37	1/2	810	1350	2160	3240	5500	8530	
	0,55	3/4	550	920	1480	2230	3780	5860	
	0,75	1	410	680	1090	1640	2780	4330	
380-	1,1	1½	300	500	810	1210	2060	3200	
415	1,5	2	220	370	590	880	1500	2340	
Volt	2,2	3	150	250	400	600	1030	1600	
E0.	3,0	4	110	190	310	460	790	1230	
50 Hz	3,7	5	90	150	240	370	630	980	
''-	4	5½	80	140	230	340	590	920	
	5,5	71/2	60	110	170	260	440	690	
	7,5	10	50	80	130	200	340	530	

10.2. 6"Moteurs Immergés

10.2.1. Démarrage direct en ligne et ou par auto-transformateur.

Puiss	ance M	loteur					Secti	on câ	ble en	[mm²] par (condu	cteur				
Volts	KW	HP	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240
	4	5½	20	30	40	70	120	180	280	380	530	720	900	1120	1300	1550	1870
	5,5	7½	0	20	30	50	90	140	210	290	410	550	700	860	1010	1200	1460
230 Volt	7,5	10	0	0	30	40	70	110	160	220	310	430	540	670	780	940	1140
VOIL	9,3	12½	0	0	20	30	60	80	130	180	260	340	430	530	620	740	900
50	11	15	0	0	0	30	50	70	110	150	210	290	360	450	530	640	770
Hz	15	20	0	0	0	0	40	50	80	110	160	220	270	340	400	480	580
	18,5	25	0	0	0	0	30	40	70	90	130	170	220	270	320	380	460
	22	30	0	0	0	0	0	40	60	80	110	150	190	230	270	320	400
	4	5½	50	80	140	210	350	550	840	1150	1600	2160	2710	3340	3890	4640	5590
	5,5	7½	40	60	100	160	270	450	630	870	1220	1650	2080	2560	3000	3580	4340
	7,5	10	30	50	80	120	200	320	480	670	930	1270	1610	1990	2330	2800	3400
380-	9,3	12½	0	40	60	90	160	250	390	530	740	1010	1270	1580	1850	2210	2680
415 Volt	11	15	0	30	50	80	140	220	330	450	630	860	1090	1350	1590	1900	2310
VOIL	15	20	0	0	40	60	100	160	250	340	480	650	820	1020	1190	1430	1740
50	18,5	25	0	0	0	50	80	130	200	270	380	520	650	810	950	1140	1390
Hz	22	30	0	0	0	40	70	110	170	230	320	440	560	690	810	980	1190
	30	40	0	0	0	0	50	80	120	170	240	320	410	500	590	710	850
	37	50	0	0	0	0	0	60	100	140	190	260	330	410	480	570	690
	45	60	0	0	0	0	0	0	80	110	160	220	280	340	400	480	580

10.2.2. **Démarrage étoile - triangle**

Puiss	ance M				5	Sectio	n de c	âble e	n [m	m²] pa	r con	ducte	ır				
Volts	kW	HP	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240
	4	5½	30	50	70	120	200	300	450	650	900	1240	1500	1900	2200	2600	3200
	5,5	71/2	20	30	50	80	130	210	320	440	610	830	1050	1290	1510	1810	2180
	7,5	10	10	20	40	60	100	160	240	340	470	640	810	1000	1170	1400	1710
230	9,3	12½	0	20	30	50	80	130	190	270	370	510	640	790	930	1110	1340
Volt	11	15	0	20	30	40	70	110	170	230	320	430	550	680	800	950	1180
50	15	20	0	0	20	30	60	80	120	170	240	330	410	510	600	720	870
Hz	18,5	25	0	0	20	30	50	60	100	140	190	260	330	410	480	570	700
	22	30	0	0	0	20	40	50	80	110	160	220	280	350	410	490	590
	30	50	0	0	0	20	30	40	60	90	120	160	200	250	300	350	430
	37	60	0	0	0	0	0	30	50	70	100	130	170	200	240	290	350
	4	5½	80	130	240	350	600	900	1400	1900	2700	3700	4600	5500	6500	8000	9500
	5,5	7½	60	100	160	240	400	620	950	1310	1830	2470	3110	3850	4500	5380	6510
	7,5	10	40	90	120	180	310	460	730	1000	1400	1910	2410	2980	3500	4200	5100
380-	9,3	12½	40	80	100	140	240	380	580	800	1120	1520	1910	2370	2770	3320	4020
415	11	15	30	50	80	120	210	320	490	680	950	1300	1640	2030	2380	2850	3470
Volt	15	20	20	40	60	90	160	240	370	510	720	970	1230	1520	1790	2140	2510
50	18,5	25	0	30	50	70	120	190	300	410	570	780	980	1220	1430	1710	2080
Hz	22	30	0	30	40	60	110	170	250	350	490	680	840	1040	1230	1470	1790
	30	40	0	0	0	50	80	120	190	260	360	490	610	760	890	1060	1280
	37	50	0	0	0	0	80	100	150	210	290	490	500	610	720	850	1040
	45	60	0	0	0	0	50	80	120	170	240	330	410	510	600	720	860

WELL PUMPS S.A.
Z.I. de Fleurus
Avenue de Lambusart 18
B-6220 Fleurus
Belgique

Tel: + 32 71 46.07.83 Fax: + 32 71 46.07.71 e-mail: <u>info@wellpumps.be</u> site: www.wellpumps.be